Thermo-Fluids: Vehicle Design Aerodynamics

Harry Schlote CID: 01746509

Imperial College London

Dyson School of Design Engineering

Introduction and Concepts

My chosen vehicle archetype was a sports car, as I was interested in the evolution of the shape of the cars overtime, as they progressed from a very rounded styling, to more defined and with sharper edges.

My 4 concepts vary in their shape ranging from rounded designs, to very sharp designs as seen in figure 3, which takes inspiration from the Tesla Cybertruck.

I chose figure 2 to take forward as I expected it to perform the best in the CFD simulation, and as I was interested to see what effect the spoiler had on the down force of the car. I also liked it as I thought it resembled 1950's sports cars rounded shape.

Concept Description

It has flush lights, door handles and an overall 'bubble' design with an added spoiler for down force, a common feature on modern sports cars to improve performance. The rounded design is even replicated in the tail-light shape.

A solid CAD model was produced, and then the flow simulation was carried out in Solidworks to visualise velocity and pressure and obtain a drag coefficient of 0.318, which when compared to the feature method calculation, gave a very similar figure.

Power to overcome drag, battery capacity and spoiler down force were calculated, and I also ran a flow simulation on the figure 3 car, to compare the differences between a rounded car, and one with sharp edges.

4.05m

Solid Model

Figure 12. Front View

		?	×
Consider Cossider	closed cavities clude cavities without flow conditio clude internal space	ns	»
res ion in solids	Value		
ent			
	De	ependency	»
Back	lext > Cancel	Help	
		?	×
	Value	1	>>
inition	Value User Defined	~))
inition ic Parameters	Value User Defined	v	»
inition ic Parameters	Value User Defined Pressure, temperature 101325 Pa	~))
inition ic Parameters	Value User Defined Pressure, temperature 101325 Pa 293.2 K	~	»
inition ic Parameters eters	Value User Defined Pressure, temperature 101325 Pa 293.2 K	~	۱
inition ic Parameters eters	Value User Defined Pressure, temperature 101325 Pa 293.2 K Velocity 3D Vector	~ ~ ~	»
inition ic Parameters eters lirection	Value User Defined Pressure, temperature 101325 Pa 293.2 K 293.2 K Velocity 3D Vector 0 m/s	× × ×	۲
inition ic Parameters eters lirection direction	Value User Defined Pressure, temperature 101325 Pa 293.2 K 293.2 K Velocity 3D Vector 0 m/s 0 m/s	 <td>۲</td>	۲
inition ic Parameters eters lirection lirection	Value User Defined Pressure, temperature 101325 Pa 293.2 K 293.2 K Velocity 3D Vector 0 m/s 0 m/s 0 m/s -31.29 m/s	 <td></td>	
inition ic Parameters eters lirection direction tirection rameters	Value User Defined Pressure, temperature 101325 Pa 293.2 K Velocity 3D Vector 0 m/s 0 m/s -31.29 m/s		۲
inition ic Parameters eters direction direction firection rameters	Value User Defined Pressure, temperature 101325 Pa 293.2 K Velocity 3D Vector 0 m/s 0 m/s -31.29 m/s	v v	»
inition ic Parameters eters direction direction firection rameters	Value User Defined Pressure, temperature 101325 Pa 293.2 K Velocity 3D Vector 0 m/s 0 m/s -31.29 m/s	Pendency	»

2D Velocity and Pressure Distribution

Surface Pressure

From the surface analysis it can be seen that the highest pressure is at the front on the car, but that the spoiler also has a higher pressure than most other parts of the car. This shows that it is effective as the air is pressing the car to the ground.

Figure 21

Flow Trajectories

Drag Calculations													
From the CFD, the drag force and down force values can be seen as well as the Drag Coefficient in figure 25. I then carried out 4 additional calculations.	E Summary Goal Name GG Force (Y) 1 GG Force (Z) 1 DragCoefficient	59 Unit [N] [N] []	Value 136.663 -287.434 0.3161721	Averaged Value 133.822 -288.672 0.3175343	Minimum Value 129.563 -290.931 0.3159558	Maximum 137.111 -287.237 0.320018	n Value 14	Progress [%] 100 100 100	Use In Convergence Yes Yes Yes	e Delta 7.548 3.693 0.0040626	Criteria 8.684 39.660 0.0436255		
Figure 25													
$\begin{split} C_{D} \text{ From Feature Method} \\ \text{Although the drag coefficient had already been calculated by CFD (0.316), I explored the value for my car using the feature method:} \\ 1+2+2+2+1+1+2+4 &= 15 \\ C_{D} &= 0.16 + 0.0095 \sum_{i=A}^{H} N_{i} \\ 0.16 + (0.0095*15) &= 0.3025 = C_{D} \end{split}$	Energy Force (Z Power = 288.672 = 9.03 k If the ca Energy 3251718	y to 2) = 2 = Dra * 31 W ar dr requ 80J =	Over 288.672 ag * Vel 29 = 9 ives for uired = = 32.5 N	come Dra 2 N ocity 032.55 W 2 1 hour at 9032.55 * 6 1J	this veloci 50 * 60 =	ty:	Batt As it is electr 31.29 Rollin Lookin Chiro should Ratio 288.6	ery Cap s an elect ic motor ms ⁻¹ . The g Resistang at and ng at and n, this ca d be the r of aero r 72/((288.)	pacity tric vehicle, voltage whe mass of the nce Coeffic other sports n cover 450 range for m resistance t 672)+(0.015	it has 30 en travelli e car is 1 ent is 0.0 car, the E car, the E km, so t y car. o total re *9.81*13	0 $V^{[1]}$ ing at 300 kg. 015 ^[2] . Bugatti his esistance: 00)) = 0.6		
ComponentShapeA Front end (top) A_{-1} A_{-2} A_{-3} A_{-4} A_{-5} A_{-6} B Windshield B_{-1} B_{-2} B_{-3} B_{-4} A_{-5} A_{-6} C Rool C_{-1} C_{-2} C_{-3} C_{-3} A_{-6} D Lower rear end D_{-1} D_{-2} D_{-3} E Front end (side) G_{-1} G_{-2} G_{-3} G_{-4} G_{-5} G_{-6} F Windshield peak G_{-1} G_{-2} G_{-3} G_{-4} G_{-5} G_{-6} H Cowi/fender cross section at windshield G_{-1} G_{-2} G_{-3} G_{-4} G_{-5} G_{-6}	Bernou The down be calcu- spoiler is on botto $P_1 + \rho gh$ $P_1 - P_2 =$ $\Delta P = (1.2)$ $\Delta P = 28^4$ $F = \Delta P^{*}$ F = 284 F = 122	ulli' n fo ulate s kno om a + ρv ρ(v ₂ 225) 4.2 N A 2 * (N D	s Equation for the second formula of the second formula of the second second second second second second for the second	ation he spoiler of area of the d the veloci are known. P_2 + ρ gh + ρ P_2 + ρ gh + ρ P_2 + ρ gh + ρ	can ties $2^{2}/2$	s] ontours	Powe Powe = 903 Curre = 50.1 45000 Time Batte Safet Safet the be capae be 40	r to over r to over 2.5/0.6 = ent at 31. 18 A)0/31.29 = to cover ry capaci y factor = attery city shoul)1 A h.	come drag come total 15054.16 V $29ms^{-1} = 15$ = 14381.6 s 450 km =3 ity = 50.18 ³ = 2 so 200.4	= 9031.5 resistand V 054.16/3 econds .99 hour 3.99 = 2 6 * 2 = 4	W ee 00 s 200.46 A h 01 A h		

[1] https://auto.howstuffworks.com/electric-car2.htm

[2] https://www.engineeringtoolbox.com/rolling-friction-resistance-d_1303html

Comparison

As I was curious about how the sharp edges on a car would effect the pressures and velocities on a car, I decided to create another sports car in Solidworks, that took inspiration from the Tesla Cybertruck.

When carrying out the flow simulation, it was clear to see that the pressures were much higher around the front bumper edge of the car. If you compare figure 26 to figure 19, you can see the difference between a curved front bumper and a sharp edged one.

Looking at figure 27, it can also be seen that at the rear of the car, there is an area of much lower velocity.

This is again down to the sharp edges, as the air is moving parallel to the car, and therefore after it gets to the back of the car, it is not going in the direction for the air off the top and the air off the bottom to meet, compared to the curved car as seen in figure 17 where the curved rear means the air is moving over the top and the bottom of the car in directions to meet each other sooner.

